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Abstract— We study constrained Markov decision processes
with finite state and action spaces. The optimal solution of a
discounted infinite-horizon optimal control problem is obtained
using a Policy Gradient Primal-Dual (PG-PD) method without
any policy parametrization. This method updates the primal
variable via projected policy gradient ascent and the dual
variable via projected sub-gradient descent. Despite the lack of
concavity of the constrained maximization problem in policy
space, we exploit the underlying structure to provide non-
asymptotic global convergence guarantees with sublinear rates
in terms of both the optimality gap and the constraint violation.
Furthermore, for a sample-based PG-PD algorithm, we quantify
sample complexity and offer computational experiments to
demonstrate the effectiveness of our results.

I. INTRODUCTION

Constrained Markov decision processes (CMDPs) [1] have
been widely used in the reinforcement learning (RL) liter-
ature [2], [3] as a class of real-world environment models
since they are suitable for many constraint-rich domains,
e.g., autonomous driving [4], medicine test [5], and financial
management [6]. Policy gradient (PG) methods that directly
search policies via gradient ascent descent or primal dual
methods lie at the heart of recent model-free algorithms
for solving CMDPs [7]–[12]. Reasonably more appealing
are their inherited versatility from PG methods [13] and
universality in adopting Lagrange method to deal with con-
straints [7], [8], making them powerful in real-world RL.

As an important and useful extension of PG methods to
incorporating constraints into policy search, policy gradient
primal-dual (PG-PD) methods [8], [14]–[17] offer to use
policy gradient and constraint violation as ascent descent
directions to solve Lagrangian-based max-min problems [1].
PG-PD methods seek to find a saddle point of the Lagrangian
for CMDPs and fall under the class of non-convex minimax
optimization methods that are challenging to show global
convergence [18], [19]. PG-PD methods also connect to
recent RL algorithms for CMDPs, e.g., constrained policy
optimization [9] and optimistic primal-dual methods [20],
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[21]. However, the finite-time or non-asymptotic global con-
vergence of PG-PD methods is unknown for the tabular
CMDPs due to lack of structural properties from policy
parameterizations.

Our contribution: In this work, we focus on the first-order
policy gradient method for obtaining the optimal solution to
the discounted infinite-horizon constrained Markov decision
processes with finite state and action spaces. We study a
Policy Gradient Primal-Dual (PG-PD) method without any
policy parametrization; the primal variable is updated via
projected policy gradient ascent and the dual variable via
projected sub-gradient descent. Despite non-concavity of
the constrained maximization problem in policy space, we
exploit problem structure to prove that PG-PD achieves
non-asymptotic global convergence with sublinear rates in
terms of both the optimality gap and the constraint violation.
Furthermore, we present a sample-based PG-PD algorithm
and quantify its sample complexity. We provide computa-
tional experiments to demonstrate the effectiveness of these
developments. To the best of our knowledge, our work is the
first to provide non-asymptotic convergence guarantees for
policy gradient primal-dual methods in the context of solv-
ing discounted infinite-horizon CMDPs without any policy
parameterizations or preconditioning.

We remark that the PG-PD method shares similarities
with the natural policy gradient primal-dual method (NPG-
PD) [11], but they are different in method and analysis. PG-
PD directly works with policy probability simplex instead of
softmax policy in [11] and it uses policy gradient without
Fisher preconditioning as a search direction. Hence, struc-
tural results established in [11] for NPG-PD do not hold here.
In contrast, our convergence analysis exploits the underlying
convexity of RL that departs from the structure used in [11].

Related work: Our work is pertinent to the Lagrangian
method for discounted infinite-horizon CMDPs [1]. This
method casts the CMDP problem into a max-min saddle-
point problem and searches for optimal policies in the
primal-dual domain. Similar algorithms include projected
PG [17], trajectory-based PG [7], RCPO [8], APDO [22],
and advanced AC algorithms [7], [12], [16], [23]. One
exception is dualDescent [24] that works in the dual domain.
Typically, these algorithms converge to a local stationary
point asymptotically. Despite the non-convexity of the max-
min problem [11], [13], several recent references show that
a more favorable global convergence is achievable. In [11],
we incorporated natural PG into a primal-dual algorithm and
demonstrated global convergence under strong duality [24].
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In [25], the authors prove that the primal-dual algorithm is
globally convergent when KL-regularized policy iteration is
utilized as the primal update. In [26], the authors propose
a globally convergent primal method with a feasibility cor-
rection. All of these global convergence results utilize either
a particular softmax policy parametrization [11], [25], [26]
or preconditioning [11]. However, a more basic theoretical
question is whether and how fast the first-order primal-dual
methods converge to a globally optimal solution. In this
work, we take an initial step towards answering this question.

Paper organization: The rest of the paper is organized as
follows. In Section II, we provide background material on
constrained Markov decision processes. In Section III, we
propose a policy gradient primal-dual method and establish
non-asymptotic convergence guarantees. In Section IV, we
present a sample-based policy gradient primal-dual algo-
rithm, quantify its sample complexity, and use computational
experiments to illustrate our results. We close the paper
with concluding remarks in Section V and relegate technical
details to appendices.

II. CONSTRAINED MARKOV DECISION PROCESSES

A discounted constrained Markov decision process is
specified by CMDP(S,A, P, r, g, b, γ, ρ), where S and A are
finite state and action spaces, P is a transition probability
measure which specifies the transition probability P (s′ | s, a)
from state s to the next state s′ under action a ∈ A, r:
S × A → [0, 1] is a reward function, g: S × A → [0, 1]
is a utility function, b is a constraint offset, γ ∈ [0, 1) is a
discount factor, and ρ is an initial state distribution over S.

A stochastic policy of an agent is a function, π: S → ∆A,
which determines a probability simplex ∆A over action
space A chosen by the agent based on the current state,
e.g., at ∼ π(· | st) at time t. Let the set of all possible
policies be Π. A policy π ∈ Π, together with initial state
distribution ρ, induces a distribution over trajectories τ :=
{(st, at, rt, gt)}∞t= 0, where s0 ∼ ρ, at ∼ π(· | st) and
st+1 ∼ P (· | st, at) for all t ≥ 0.

Given a policy π, the value functions V πr , V πg : S → R,
associated with reward r or utility g are expected values of
total discounted rewards or utilities received under policy π,

V πr (s) := E

[ ∞∑
t= 0

γtr(st, at)
∣∣π, s0 = s

]

V πg (s) := E

[ ∞∑
t= 0

γtg(st, at)
∣∣π, s0 = s

]
where E is taken over trajectory τ induced by π. We further
introduce the state-action value functions Qπr (s, a), Qπg (s, a):
S ×A→ R when agent starts from an arbitrary state-action
pair (s, a) and follows policy π, together with their advantage
functions Aπr , Aπg : S ×A→ R,

Qπ� (s, a) := E

[ ∞∑
t= 0

�(st, at)
∣∣π, s0 = s, a0 = a

]
Aπ� := Qπ� (s, a) − V π� (s),

where symbol � stands for r or g. Since r, g ∈ [0, 1], it is easy
to see that 0 ≤ V π� (s) ≤ 1/(1− γ). Their expected values
under ρ are: V π� (ρ) := Es0∼ρ[V π� (s0)]. The agent’s goal is
to find a policy π? that maximizes the expected reward value
subject to a constraint on the expected utility value,

maximize
π∈Π

V πr (ρ) subject to V πg (ρ) ≥ b. (1)

Maximization is over all policies and, to avoid trivial cases,
the constraint offset is set to b ∈ (0, 1/(1−γ)]. We note that
maximization problem (1) is not concave [11].

Let V π,λL (ρ) := V πr (ρ)+λ(V πg (ρ)−b) be the Lagrangian.
We can cast problem (1) as a max-min problem,

maximize
π ∈Π

minimize
λ≥ 0

V π,λL (ρ) (2)

where π is the primal variable and λ is the nonnegative
Lagrange multiplier or dual variable. The associated dual
function is defined as V λD(ρ) := maximizeπ V

π,λ
L (ρ). We

assume that problem (1) is strictly feasible.
Assumption 1 (Strict Feasibility): There exists ξ > 0 and

π̄ such that V π̄g (ρ)− b ≥ ξ.
Let the optimal dual variable be λ? = arg minλ≥ 0 V

λ
D(ρ).

We use shorthand V π
?

r (ρ) = V ?r (ρ) and V λ
?

D (ρ) = V ?D(ρ).
Despite lack of convexity in (2), the problem structure can

be utilized to establish nice properties, e.g., [11, Lemma 2].

III. ALGORITHM AND CONVERGENCE

We introduce a policy gradient primal-dual method under
the direct policy parametrization in Section III-A and estab-
lish its convergence in Sections III-B and III-C.

A. Policy Gradient Primal-Dual (PG-PD) Method

Let Θ = ∆
|S|
A be the set of all policies and let {πθ =

θ | θ ∈ Θ} be the policy class without parametrization. We
utilize a Policy Gradient Primal-Dual (PG-PD) method to
update primal and dual variables θ and λ,

θ(t+1) = PΘ

(
θ(t) + η1∇θV θ

(t),λ(t)

L (ρ)
)

λ(t+1) = PΛ

(
λ(t) − η2

(
V θ

(t)

g (ρ)− b
)) (3)

where ∇θV θ
(t),λ(t)

L (ρ) := ∇θV θ
(t)

r (ρ) + λ(t)∇θV θ
(t)

g (ρ),
PΘ is a projection onto the probability simplex, PΛ is a
projection onto the interval Λ, and η1, η2 > 0 are stepsizes.

PG-PD utilizes a simple primal-ascent dual-descent struc-
ture: the primal update θ(t+1) performs projected gradient
ascent using the policy gradient ∇θV (t)

L (ρ) and the dual up-
date λ(t+1) runs projected sub-gradient descent by collecting
constraint violation b − V (t)

g (ρ). We use shorthand V
(t)
g (ρ)

for V θ
(t)

g (ρ); similar for other values.
PG-PD is a basic policy search method [8], [14], [15] that

differs from the natural policy gradient primal-dual method
(NPG-PD) [11]. PG-PD directly works with the policy, and
the policy gradient is absent of Fisher preconditioning. Thus,
policy-induced structural result established in [11] for NPG-
PD does not hold here: multiplicative weight update used
in [11] cannot be employed to update the policy in PG-PD.

2852



In what follows, we exploit the underlying convexity to prove
the convergence for PG-PD.

B. Convergence and Optimality

We establish convergence of PG-PD for particular projec-
tion interval Λ, initial policy, and stepsizes, in Theorem 1.

Theorem 1 (Sublinear Rate): Let Assumption 1 hold and
let Λ = [0, 2/ ((1− γ)ξ)], ρ > 0, λ(0) = 0, and θ(0) ∈ Θ be
such that V θ

(0)

r (ρ) ≥ V ?r (ρ). For stepsizes

η1 =
(1− γ)4

2|A|(1 + 2/ξ)

η2 =
8|A||S|(1 + 2/ξ)

(1− γ)4
√
T

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

the iterates θ(t) generated by PG-PD satisfy

1

T

T−1∑
t= 0

(
V ?r (ρ)− V (t)

r (ρ)
)
≤ C1

|A||S|‖dπ?ρ /ρ‖2∞
(1− γ)6T 1/4

(4a)[
1

T

T−1∑
t= 0

(
b− V (t)

g (ρ)
)]

+

≤ C2

|A||S|‖dπ?ρ /ρ‖2∞
(1− γ)6T 1/4

(4b)

where C1 and C2 are absolute constants.
In Theorem 1, for tabular CMDPs, we show that the aver-

age reward value function converges to the optimal one and
that the constraint violation decays to zero, both in sublinear
rate T 1/4. Despite lack of policy’s convexity, we provide
much stronger convergence guarantees than deterministic
nonconvex minimax optimization [18]. Even though PG-
PD does not have policy-induced structural properties, we
show that the proof strategy employed in [11, Theorem 1]
works once we exploit the underlying convexity of the prob-
lem discussed in Section III-C. Alternatively, with iteration
complexity O(1/ε4), PG-PD yields an ε-optimal policy by
selecting πout uniformly over iterates from π(1) to π(T ),

E
[
V ?r (ρ)− V π

out

r (ρ)
]
≤ ε and E

[
b− V π

out

g (ρ)
]
≤ ε.

Compared with the softmax policy result [11], the sublin-
ear rate for optimality gap/constraint violation in Theorem 1
is slightly worse. This is because PG-PD uses gradient
ascent/descent without resorting to any policy-induced struc-
tural properties and the rate depends on problem dimensions
|S| and |A| as well as distribution shift ‖dπ?ρ /ρ‖∞ that
specifies the exploration factor [13].

C. Convexity in Occupancy Measure

The occupancy measure is a useful analytical tool for
analyzing CMDPs [1]. An occupancy measure qπ defines a
set of probability distributions generated by taking a policy
π,

qπs,a =

∞∑
t= 0

γt P ( st = s, at = a |π, s0 ∼ ρ ) (5)

for all s ∈ S, a ∈ A. For brevity, we put all qπs,a together as
qπ ∈ R|S||A| and qπa = [ qπ1,a, · · · , qπ|S|,a ]>. For an action a,
we collect transition probabilities P (s′ | s, a) for all s′, s ∈

S to denote Pa ∈ R|S|×|S|. The occupancy measure qπ is
defined in the domain Q := {qπ ∈ R|S||A| |

∑
a∈A(I −

γP>a )qπa = ρ and qπ ≥ 0}, a set of linear constraints.

With a slight abuse of notation, we write r ∈ [0, 1]|S||A|

and g ∈ [0, 1]|S||A|. Thus, the value functions V πr , V πg : S →
R under the initial state distribution ρ are linear functions [1]:

V πr (ρ) = 〈qπ, r〉 := Fr(q
π)

V πg (ρ) = 〈qπ, g〉 := Fg(q
π).

We are now in a position to re-write (1) as a linear program,

maximize
qπ ∈Q

Fr(q
π) subject to Fg(q

π) ≥ b (6)

where Q is the domain. Since the transition P is unknown,
we can not solve the linear program (6) directly. For any
qπ ∈ Q, the associated policy π is given by

π(a | s) =
qπs,a∑
a∈A q

π
s,a

for all s ∈ S, a ∈ A. (7)

Abstractly, we denote by πq: Q → ∆
|S|
A a mapping from an

occupancy measure qπ to a policy π. Similarly, as defined
by (5) we denote by qπ: ∆

|S|
A → Q a mapping from a policy

π to an occupancy measure qπ . Clearly, qπ = (πq)−1.

Despite the non-convexity of (1) in policy, its reformula-
tion (6) reveals underlying convexity in occupancy measure
qπ . We first exploit this convexity to show the average policy
improvement over T steps in Lemma 2; see Appendix A for
proof. We use shorthand q(t), q? for qθ

(t)

, qθ
?

, respectively.

Lemma 2 (Bounded Average Performance): Let assump-
tions in Theorem 1 hold. For stepsizes η1 = 1/L and
η2 = (1− γ)2DL/(2

√
T ), the iterates π(t) = θ(t) generated

by PG-PD satisfy

1

T

T−1∑
t= 0

Z(t) ≤ DL

T 1/4
(8)

where Z(t) = Fr(q
?)− Fr(q(t)) + λ(t)

(
Fg(q

?)− Fg(q(t))
)
,

D :=
8|S|

(1− γ)2

∥∥∥∥∥dπ
?

ρ

ρ

∥∥∥∥∥
2

∞

and L :=
2|A|(1 + 2/ξ)

(1− γ)4
.

The proof of Lemma 2 differs from that of proving [11,
Lemma 7]. Since PG-PD’s policy update is not in multiplica-
tive form, it is not possible to apply performance difference
lemma as in [11]. Instead, we next begin with standard de-
scent lemma and exploit the convexity in occupancy measure.

Proof of Theorem 1: We first bound the optimality gap.
By the equality (λ(T ))2 =

∑T−1
t= 0

(
(λ(t+1))2 − (λ(t))2

)
and

the dual update (3), we can bound (λ(T ))2 by

2η2

T−1∑
t= 0

λ(t)
(
b− Fg(q(t))

)
+ η2

2

T−1∑
t= 0

(
Fg(q

(t))− b
)2

≤ 2η2

T−1∑
t= 0

λ(t)
(
Fg(q

?)− Fg(q(t))
)

+
η2

2T

(1− γ)2
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where the inequality is due to the feasibility of q?: Fg(q?) ≥
b, and |Fg(q(t))− b| ≤ 1

1−γ . Hence,

− 1

T

T−1∑
t= 0

λ(t)
(
Fg(q

?)− Fg(q(t))
)
≤ η2

2(1− γ)2
. (9)

By Lemma 2, substituting (9) into (8) leads to the first
bound, where we take η2 = (1−γ)2DL

2
√
T

.
We next bound the constraint violation. By the dual update

in (3), for any λ ∈ [0, 2/((1− γ)ξ)],

|λ(t+1) − λ|2

≤
∣∣λ(t) − λ

∣∣2 − 2η2

(
Fg(q

(t))− b
)(
λ(t) − λ

)
+

η2
2

(1− γ)2

where the inequality is due to the non-expansiveness of pro-
jection operator PΛ and (Fg(q

(t))− b)2 ≤ 1
(1−γ)2 . Summing

it up from t = 0 to t = T − 1, and dividing by T , yield

1

T
|λ(T ) − λ|2 − 1

T
|λ(0) − λ|2

≤ −2η2

T

T−1∑
t= 0

(
Fg(q

(t))− b
)(
λ(t) − λ

)
+

η2
2

(1− γ)2

which by some rearrangement further implies that

1

T

T−1∑
t= 0

(
Fg(q

(t))− b
)(
λ(t) − λ

)
≤ |λ

(0)−λ|2

2η2T
+

η2

2(1− γ)2
.

We note that Fg(qθ
?

) ≥ b. By adding the inequality above
to (8) in Lemma 2 from both sides,

1

T

T−1∑
t= 0

(
Fr(q

θ?)− Fr(q(t))
)

+
λ

T

T−1∑
t= 0

(
b− Fg(q(t))

)
≤ DL

T 1/4
+
|λ(0) − λ|2

2η2T
+

η2

2(1− γ)2
.

(10)
We choose λ = 2

(1−γ)ξ in (10) if
∑T−1
t= 0

(
b− Fg(q(t))

)
≥ 0;

otherwise λ = 0. Thus,

Fr(q
θ?)− Fr(q′) +

2

(1− γ)ξ
[b− Fg(q′)]+

≤ DL

T 1/4
+

1

2η2(1− γ)2ξ2T
+

η2

2(1− γ)2

where Fr(q
′) := 1

T

∑T−1
t= 0 Fr(q

(t)) and Fg(q
′) :=

1
T

∑T−1
t= 0 Fg(q

(t)) for some occupancy measure q′.
Notice that 2

(1−γ)ξ ≥ 2λ?. By [11, Lemma 2],

[b− Fg(q′)]+ ≤
(1− γ)ξDL

T 1/4
+

1

2η2(1− γ)ξT
+

η2ξ

2(1− γ)

which readily leads to the desired constraint violation bound
by noting that 1

T

∑T−1
t= 0

(
b− Fg(q(t))

)
= b − Fg(q′), η2 =

8|A||S|(1+2/ξ)

(1−γ)4
√
T
‖dπ?ρ /ρ‖2∞, and ‖dπ?ρ /ρ‖2∞ ≥ (1− γ)2.

IV. SAMPLE-BASED IMPLEMENTATION

We present a sample-based implementation of PG-PD in
Section IV-A and show its sample complexity. We provide
computational experiments in Section IV-B.

A. Sample-Based PG-PD

We introduce a sample-based implementation of PG-PD
by assuming access to policy simulators or generative mod-
els. We estimate policy gradient via

∂V θL (ρ)

∂θs,a
=

1

1− γ
dπρ (s)QπL(s, a) (11)

where dπρ (s) = (1 − γ)
∑∞
t= 0 γ

tPπ(st = s | s0 ∼ ρ) and
QπL(s, a) = Qπr (s, a) + λQπg (s, a). It suffices to estimate
dπρ (s) and QπL(s, a), independently. At each time t, we can
apply the random horizon rollouts [27] to obtain unbiased
estimates of Q(t)

L (s, a) and d(t)
ρ (s),

E
[
Q̂

(t)
L (s, a)

]
= Q

(t)
L (s, a) and E

[
d̂(t)
s0 (s)

]
= d(t)

s0 (s).

Estimating V (t)
g (ρ) is similar. Hence, (11) can be estimated

by 1
1−γ d̂

(t)
ρ (s)Q̂

(t)
L (s, a) for all (s, a) ∈ S × A. For each

estimate, we collect K trajectories with random horizon and
average K estimates to reduce the variance. We show sample
complexity guarantee in Theorem 3.

Theorem 3 (Sample Complexity): Let Assumption 1 hold.
Fix Λ = [0, 2/ ((1− γ)ξ)] and ρ > 0. Fix T > 0, K =

Θ(T ), λ(0) = 0, and θ(0) such that E[V θ
(0)

r (ρ)] ≥ V ?r (ρ).
Suppose the iterates π(t) and λ(t) are generated by sample-
based PG-PD with η1 = O(1) and η2 = O(1/

√
T ), in which

K rounds of trajectory samples are used at each time t. Then,

E

[
1

T

T−1∑
t= 0

(
V ?r (ρ)−V (t)

r (ρ)
)]
≤ C3

|A||S|‖dπ?ρ /ρ‖2∞
(1− γ)6T 1/4

(
1+

C ′3
K

)

E

[
1

T

T−1∑
t= 0

(
b−V (t)

g (ρ)
)]

+

≤ C4

|A||S|‖dπ?ρ /ρ‖2∞
(1− γ)6T 1/4

(
1 +

C ′4
K

)
where C3, C4, C ′3, C ′4 are absolute constants.

Proof: It is similar to proving Theorem 1, except that
we use estimated values and their variances as in [11].

Theorem 3 shows the sampling effect via the sample size
K. If K is large enough, the rate matches Theorem 1.
Also, Theorem 3 matches the rate for stochastic minimax
optimization [18] in the number of trajectories KT .

B. Computational Experiments

In this experiment, we randomly generate a CMDP with
|S| = 10, |A| = 5, γ = 0.8, and b = 3. We first simulate PG-
PD (3), where we choose algorithm parameters η1 = η2 = 1
and initialize policy by a policy generated by the policy
iteration. We compute the policy gradient (11) exactly via the
Bellman equations [28]. As shown in Fig. 1, the optimality
gap converges to zero sublinearly and the constraint violation
approaches a non-positive constant, yielding zero violation.
Secondly, we test sample-based PG-PD with the same CMDP
setting and algorithm stepsizes. In Fig. 2, we show two
random instances with different total numbers of samples
K. For fixed T , as we increase K, our algorithm approaches
stationary point with better reward objective and constraint
violation.
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Optimality gap Constraint violation
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Fig. 1: Performance of PG-PD.

Reward objective Constraint violation
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-0.23

0.23
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Fig. 2: Performance of Sample-Based PG-PD: K = 300
(—) and K = 900 (—).

V. CONCLUSION

We have utilized the policy gradient primal-dual (PG-PD)
method for solving tabular CMDPs. In addition to establish-
ing non-asymptotic global convergence guarantees, we have
also proved convergence and quantified sample complexity
for an associated sample-based algorithm. Our ongoing work
focuses on a unified framework for policy gradient primal-
dual methods with or without Fisher preconditioning.
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APPENDIX

A. Proof of Lemma 2

By the smoothness of value functions [13, Lemma D.3],

|Fr(qθ)− Fr(q(t))−
〈
∇θFr(q(t)), θ − θ(t)

〉
|

≤ γ|A|
(1−γ)3 ‖θ − θ

(t)‖2.

If we fix λ(t) ∈ [0, 2/((1− γ)ξ)], then∣∣(Fr + λ(t)Fg)(q
θ)− (Fr + λ(t)Fg)(q

(t))

−
〈
∇θFr(q(t)) + λ(t)∇θFg(q(t)), θ − θ(t)

〉∣∣
≤ L

2 ‖θ − θ
(t)‖2.
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Application of absolute value inequalities above twice yields,

(Fr + λ(t)Fg)(q
θ) ≥ (Fr + λ(t)Fg)(q

(t))

+
〈
∇θFr(q(t))+λ(t)∇θFg(q(t)), θ − θ(t)

〉
− L

2 ‖θ − θ
(t)‖2

≥ (Fr + λ(t)Fg)(q
θ)− L‖θ−θ(t)‖2.

(12)
The primal update in (3) is equivalent to

θ(t+1) = arg max
θ∈Θ

{
V (t)
r (ρ) + λ(t)V (t)

g (ρ)

+
〈
∇θV (t)

r (ρ) + λ(t)∇θV (t)
g (ρ), θ − θ(t)

〉
− 1

2η1
‖θ−θ(t)‖2

}
.

Take η1 = 1
L and let θ = θ(t+1) in (12). Hence,

(Fr + λ(t)Fg)(q
(t+1))

≥ maximize
θ∈Θ

{
(Fr + λ(t)Fg)(q

(t))

+
〈
∇θFr(q(t)) + λ(t)∇θFg(q(t)), θ − θ(t)

〉
− L

2 ‖θ − θ
(t)‖2

}
≥ maximize

θ∈Θ

{
(Fr + λ(t)Fg)(q

θ)− L‖θ − θ(t)‖2
}

≥ maximize
α∈ [0,1]

{
(Fr + λ(t)Fg)(q

θα)− L‖θα − θ(t)‖2
}

(13)
where θα := πq(αq?+(1−α)q(t)), we use (12) in the second
inequality, the last inequality is due to πq ◦ qπ = idSA and
linearity of qθ in θ. By the linearity of Fr, Fg in qθ,

(Fr + λ(t)Fg)(q
θα)

= α(Fr + λ(t)Fg)(q
?) + (1− α)(Fr + λ(t)Fg)(q

(t)).
(14)

By the definition of πq , (πq(q)− πq(q′))sa equals to

1∑
a∈A qsa

(qsa − q′sa) +

∑
a∈A q

′
sa −

∑
a∈A qsa∑

a∈A qsa
∑
a∈A qsa

q′sa

which yields an upper bound on ‖πq(q)− πq(q′)‖2,

‖πq(q)− πq(q′)‖2

=
∑
s∈S

∑
a∈A ((πq(q)− πq(q′))sa)

2

≤ 2
∑
s∈S

∑
a∈A

(qsa−q′sa)2

(
∑
a∈A qsa)2

+ 2
∑
s∈S

∑
a∈A

(∑
a∈A q

′
sa−

∑
a∈A qsa∑

a∈A qsa
∑
a∈A qsa

)2

(q′sa)2

≤ 2
∑
s∈S

1
(
∑
a∈A qsa)2

(∑
a∈A(qsa − q′sa)2

+
(∑

a∈A q
′
sa −

∑
a∈A qsa

)2 )
.

where we also use ‖x+y‖2 ≤ 2‖x‖2 +2‖y‖2. Let q? = qθ
?

.
Then, we bound ‖θα − θ(t)‖2 by

‖θα − θ(t)‖2

=
∥∥∥πq (αq? + (1− α)q(t)

)
− πq

(
q(t)
)∥∥∥2

≤
∑
s∈S

2α2(∑
a∈A q

(t)
sa

)2

(∑
a∈A

(
q?sa − q

(t)
sa

)2

+
(∑

a∈A q
(t)
sa −

∑
a∈A q

?
sa

)2
)

in which the upper bound further can be expressed as∑
s∈S

4α2(∑
a∈A q

(t)
sa

)2

((∑
a∈A q

?
sa

)2
+
(∑

a∈A q
(t)
sa

)2
)

= 4α2
∑
s∈S

(
dπ
?

ρ (s)
)2

+

(
dπ

(t)

ρ (s)

)2

(
dπ

(t)
ρ (s)

)2

≤ 4α2|S|
∥∥∥ dπ

?

ρ

dπ
(t)
ρ

∥∥∥2

∞
+ 4α2|S|

≤ α2D
(15)

where we apply dπ
(t)

ρ ≥ (1 − γ)ρ componentwise in the
second inequality. We now apply (14) and (15) to (13),

(Fr + λ(t)Fg)(q
?)− (Fr + λ(t)Fg)(q

(t+1))

≤ minimize
α∈ [0,1]

{
L‖θα − θ(t)‖2

+ (Fr + λ(t)Fg)(q
?)− (Fr + λ(t)Fg)(q

θα)
}

≤ minimize
α∈ [0,1]

{
α2DL

+ (1−α)
(
(Fr+λ(t)Fg)(q

?)− (Fr + λ(t)Fg)(q
(t))
)}

which further implies

(Fr + λ(t+1)Fg)(q
?)− (Fr + λ(t+1)Fg)(q

(t+1))

≤ minimize
α∈ [0,1]

{
α2DL

+ (1− α)
(
(Fr+λ(t)Fg)(q

?)− (Fr + λ(t)Fg)(q
(t))
)}

− (λ(t) − λ(t+1))
(
Fg(q

?)− Fg(q(t+1))
)
.

(16)
We now check the right-hand side of (16). By the dual
update in (3), it is easy to see that −(λ(t)−λ(t+1))(Fg(q

?)−
Fg(q

(t+1))) ≤ |λ(t)−λ(t+1)| 1
1−γ ≤

η2
(1−γ)2 . We can solve the

minimization problem in (16) by setting α = 0 if α(t) < 0;
α = 1 if α(t) > 1; α = α(t) if α(t) ∈ [0, 1],

α(t) :=
(Fr+λ(t)Fg)(q?)−(Fr+λ(t)Fg)(q(t))

2DL .

By setting η2 = (1−γ)2DL

2
√
T

, we consider three cases: (i) when
α(t) < 0, we set α = 0 for (16),

(Fr + λ(t+1)Fg)(q
?)− (Fr + λ(t+1)Fg)(q

(t+1)) ≤ DL
2
√
T

;
(17)

(ii) when α(t) > 1, we set α = 1 that leads to (Fr +
λ(t+1)Fg)(q

?) − (Fr + λ(t+1)Fg)(q
(t+1)) ≤ 3

2DL, i.e.,
α(t+1) ≤ 3

4 . Thus, this case reduces to the next case (iii):
0 ≤ α(t) ≤ 1 in which we can express (16) as

α(t+1) ≤
(

1− α(t)

2

)
α(t) + 1

4
√
T
. (18)

By choosing λ(0) = 0 and θ(0) such that V θ
(0)

r (ρ) ≥
V θ

?

r (ρ), we know that α(0) ≤ 0. Thus, α(1) ≤ 1
4
√
T

. By (17),
the case α(1) ≤ 0 is trivial.

Without loss of generality, we assume that 0 ≤ α(t) ≤
1

T 1/4 ≤ 1. By induction of (18) over t, α(t+1) ≤ 1
T 1/4 . Com-

bining this with (17), and averaging over t = 0, 1, · · · , T−1,
we obtain the desired bound.
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